If it's not what You are looking for type in the equation solver your own equation and let us solve it.
5x^2-10+1=0
We add all the numbers together, and all the variables
5x^2-9=0
a = 5; b = 0; c = -9;
Δ = b2-4ac
Δ = 02-4·5·(-9)
Δ = 180
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{180}=\sqrt{36*5}=\sqrt{36}*\sqrt{5}=6\sqrt{5}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-6\sqrt{5}}{2*5}=\frac{0-6\sqrt{5}}{10} =-\frac{6\sqrt{5}}{10} =-\frac{3\sqrt{5}}{5} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+6\sqrt{5}}{2*5}=\frac{0+6\sqrt{5}}{10} =\frac{6\sqrt{5}}{10} =\frac{3\sqrt{5}}{5} $
| 28=j(-4) | | 2x−8=6x+4 | | 24=b+15 | | -x2+2x+4=x-2 | | -12=d(4) | | w-13=2 | | 3x+-2=3x+-4 | | 3x+-2=3x+-1 | | 3. 7–2(2x+1)=x–5 | | 4(y–1)=2y+6 | | 3x+-2=3x+-3 | | (10x+4)-(9-6x)=43 | | 2x+2/2x-1=2 | | 3y-5(y+7)=-23 | | 4(-6y-10)=440 | | -14=z(7) | | 10x-19=8x+11 | | x=(254x156) | | 40-2x=3x-15 | | 1/5a=-7 | | 4(x-16)=24 | | 20=-5g | | x/7x+15=50 | | 10u-21=21 | | 10x^2-45x+20=0 | | 12x+20=x | | 1.1(10x+30)=33+11x | | 7/2x+3=5 | | 4x+77x=44x+28 | | 2y=124/5 | | 2/2x+22x-3=0 | | 2aa=11 |